Catchment vegetation and temperature mediating trophic interactions and production in plankton communities
نویسندگان
چکیده
Climatic factors influence the interactions among trophic levels in an ecosystem in multiple ways. However, whereas most studies focus on single factors in isolation, mainly due to interrelation and correlation among drivers complicating interpretation and analyses, there are still only few studies on how multiple ecosystems respond to climate related factors at the same time. Here, we use a hierarchical Bayesian model with a bioenergetic predator-prey framework to study how different climatic factors affect trophic interactions and production in small Arctic lakes. Natural variation in temperature and catchment land-cover was used as a natural experiment to exemplify how interactions between and production of primary producers (phytoplankton) and grazers (zooplankton) are driven by direct (temperature) and indirect (catchment vegetation) factors, as well as the presence or absence of apex predators (fish). The results show that increased vegetation cover increased phytoplankton growth rate by mediating lake nutrient concentration. At the same time, increased temperature also increased grazing rates by zooplankton. Presence of fish increased zooplankton mortality rates, thus reducing grazing. The Arctic is currently experiencing an increase in both temperature and shrub vegetation cover due to climate change, a trend, which is likely to continue. Our results point towards a possible future general weakening of zooplankton grazing on phytoplankton and greening of arctic lakes with increasing temperatures. At the same time, the impact of the presence of an apex predator indicate considerable local variation in the response. This makes direction and strength of global change impacts difficult to forecast.
منابع مشابه
Plankton stress responses from PAH exposure and nutrient enrichment
The hypothesis that the nature and force of PAH stress responses from plankton systems are coupled to the nutrient status of that system was tested in a mesocosm experiment. Four treatments were applied consisting of control (Cn), pyrene exposed (PYl. nutrient spiked (Nul. and nutrient spiked and pyrene exposed (NuPy) groups in replicate bags (n = 3) representing plankton communities including ...
متن کاملSpring phenological responses of marine and freshwater plankton to changing temperature and light conditions
Shifts in the timing and magnitude of the spring plankton bloom in response to climate change have been observed across a wide range of aquatic systems. We used meta-analysis to investigate phenological responses of marine and freshwater plankton communities in mesocosms subjected to experimental manipulations of temperature and light intensity. Systems differed with respect to the dominant mes...
متن کاملHORIZONS Mismatch revisited: what is trophic mismatching from the perspective of the plankton?
Long-term changes in the seasonal timing of phytoplankton and zooplankton population development (i.e. phenological changes) have been widely reported in freshwater and marine ecosystems, and have been interpreted as a biological response to ongoing climate change. Observed among-species variations in the rates and patterns of these changes have led to concerns that seasonal trophic interaction...
متن کاملMercury Biomagnification between Two Trophic Levels of a Grazing Food Chain (Plankton and Planktivorous Fish) in a Fresh Water Ecosystem
Background: The Present study was carried out to track and calculate Biomagnification Factor (BMF) of total mercury (T-Hg) between two different trophic levels (i.e., plankton and a planktivorous fish) in a fresh water grazing food chain. Methods: Experimental organisms were planktonic biomass and silver carp (Hypophthalmichthys molitrix) as a planktivorous fish. Silver carp samples were obt...
متن کاملPlankton community properties determined by nutrients and size-selective feeding
The potential impacts of climate change on marine planktonic ecosystems remain difficult to predict. Climate forcing can alter nutrient availability and predator community composition, and here we show that these shifts may dramatically alter plankton trophic structure, size distributions and biomass. We modeled phytoplankton and zooplankton as a highly resolved size spectrum with size-dependen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017